

Thermo-Mechanical Behavior of Continuous Casting Funnel Molds

Lance C. Hibbeler (Ph.D. Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Objectives

- Explore the thermal and mechanical response of the mold plates to the heat load experienced during regular casting, using a steady-state elastic finite-element model
- Recommend adjustment to taper to account for mold thermal distortion
- Recommend improvements to water box design
- Develop post-processing tool for exporting mold shape and temperatures into slice/chunk models of the solidifying shell

Finite Element Mesh

Part	Nodes	Elements		
Wide Face Mold Plate	855,235	(Tet)	4,223,072	
Wide Face Water Box	185,534	(Tet, Wedge, Hex)	190,457	
Wide Face Bolts	90	(Truss)	45	
Tie Rods	4	(Truss)	2	
Narrow Face Mold Plate	233,931	(Tet, Wedge, Hex)	495,566	
Narrow Face Water Box	83,269	(Tet, Wedge, Hex)	239,604	
Narrow Face Bolts	16	(Truss)	8	
Narrow Face Hangers	2	(Analytical Surf.)	0	
Total	1,358,081		5,148,754	

Thermal DOF = *1,089,166* N

Mechanical DOF = 4,830,081

6

Material Properties

- Mold: Cu-Zr-Cr alloy
 - Thermal conductivity = 350 W/(m·K)
 - Density = 8900 kg/m³ (0.322 lb/in³)
 - Elastic modulus = 117 GPa (17.10³ ksi)
 - Poisson's ratio = 0.181
 - Coefficient of thermal expansion = $18.0 \cdot 10^{-6} 1/^{\circ}C$
- Water box: AISI 316Ti stainless steel
 - Elastic modulus = 200 GPa (30-10³ ksi)
 - Poisson's ratio = 0.299
- Copper/steel coefficient of friction = 0.5

Water Channel Conditions

huous

•

- Heat transfer in mold
 - Initial temperature of 30 °C (86 °F)
 - Calibrated surface heat flux, water temperature
 - Water box has little effect on thermal results
 - 12 minutes*
- Stress model in mold and water box
 - Ferrostatic pressure, bolts, contact with friction
 - 44.6 days*

Wide Face Water Box

Vous

uous sting

Hot Face Thermo-Mechanical Behavior: Wide Face Inner Flat Middle Casting Consortium

University of Illinois at Urbana-Champaign

vous sting

Metals Processing Simulation Lab

Lance C. Hibbeler

Displacement (mm)

sting

WF Hot Face Displacement

Hot Face Thermo-Mechanical Behavior: Narrow Face Centerline

University of Illinois at Urbana-Champaign

asting

Metals Processing Simulation Lab

Lance C. Hibbeler

26

Taper Considerations

 Mold distortion creates extra perimeter change (~1.2 mm per ¼ mold)

Casting Consortium

- Funnel effect on taper is significantly reduced by mold distortion
- This must be accounted for when designing taper practices

University of Illinois at Urbana-Champaign

- Shorter bolts are 4 times stiffer than long bolts
 Places that tend to distort the most have weakest support
- Increase thickness of front water box plate and stiffeners to increase resistance to bending
- Previous work shows thicker water box plates better controls the distortion (Z. Yuan, CCC Meeting 2008)

asting

- Speed up analysis time
 - ABAQUS/Explicit shows promise
 - Better parallelization, much more robust contact
 - Must be transient simulation, but mass scaling helps
- Investigation of:
 - Mold life and creep behavior
 - Different funnel geometries
 - Different casting conditions (speed, width, etc.)
 - Effect of mold friction on shell shrinkage
- Use distortion results in shell models

Casting Consortium	Results in a Lagrangian Frame
NT11	2 sec
449 395 365 335 304	4 sec
274 244 214 184 153 123	6 sec
93 63 33	8 sec
z—x Y	10 sec

32

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Corus, LWB Refractories, Nucor Steel, Nippon Steel, Postech, Posco, ANSYS-Fluent)
- Corus IJmuiden R&D staff and plant personnel
- National Center for Supercomputing Applications (NCSA) at UIUC – "Cobalt" cluster
- Dassault Simulia, Inc. (ABAQUS parent company)

University of Illinois at Urbana-Champaign		Metals Processing Simulation Lab	•	Lance C. Hibbeler	•	33